
INTRODUCTION
•	 Two recent New England Journal of Medicine publications reported that imetelstat (GRN163L) 

is active in patients with essential thrombocythemia (ET)1 or 
primary, post-ET, and post-polycythemia vera myelofibrosis.2

•	 Imetelstat (GRN163L) is a covalently lipidated 13-mer N3′-P5′ 
thio-phosphoramidate (NPS) oligonucleotide (Figure 1) that 
is complementary to the RNA template region (hTR) of the 
telomerase enzyme.3

•	 Imetelstat has a covalently bound 5′ lipophilic (palmitoyl) group 
to increase cell permeability and tissue distribution.3

•	 Imetelstat has long tissue residence time in bone marrow, 
spleen, and liver (0.19-0.51 μM observed in human bone marrow 
at 41-45 hours post 7.5 mg/kg dose).6 

•	 Imetelstat is a potent direct competitive inhibitor of telomerase 
reverse transcriptase enzyme activity (half maximal inhibitory 
concentration [IC50] = 0.5-10.0 nM [cell-free]) (Figure 2).3,6,7

—— Inhibits telomerase activity in vitro across multiple cancer 
cell lines.3,7

—— Induces reduction in telomere length; by inhibiting the RNA component of telomerase, hTERT 
is reduced and telomere length decreases (Figure 2).7,8

•	 Imetelstat does not elicit its effect through an antisense inhibition of protein translation.   
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•	 Treatment with imetelstat has been associated with thrombocytopenia,1,2 and it was recently 
proposed that the thrombocytopenia observed in patients with myeloproliferative neoplasms (MPN) 
treated with imetelstat may occur through off-target effects, with the hypothesis that imetelstat acts 
as a ligand for TLRs such as TLR9.12

—— An association between TLR activation and lipopolysaccharide-induced thrombocytopenia 
has been demonstrated.13

•	 However, the sequence of imetelstat is shorter than the minimal sequence to activate TLR9, and it 
lacks CpG motifs spaced by 6 to 10 nucleotides required for activation (Figure 4).

•	 Synthetic, single-stranded DNA with CpG (unmethylated deoxycytidyldeoxyguanosine) dinucleotide 
motifs, characteristic of bacteria and virus genomes, activate the innate immune response through 
TLR9 signaling (Figures 3 and 4).11

—— Minimal oligonucleotides that activate human TLR9 comprise 2 CpG islands separated by 6 to 
10 nucleotides, where the first CpG motif is preceded by the 5′-thymidine and the elongated 
poly-thymidine tail at the 3′ end of the oligonucleotide.

—— Oligonucleotides shorter than 21 nucleotides are less likely to activate TLR9.

•	 Phosphorothioate oligonucleotides with the above properties bind to and activate TLR9.12
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CONCLUSIONS
•	 Imetelstat, at a clinically relevant concentration range, had no stimulatory effect on the majority of 

tested TLRs. 

—— The induction of TLR8 is not believed to be relevant because the induction was substantially 
lower than the positive control, and TLR8 has not been reported to be associated with 
thrombocytopenia. 

•	 These results suggest that the thrombocytopenia observed in some patients treated with imetelstat 
is likely not driven via interactions with TLRs.

•	 These findings are supported by the structural differences between imetelstat and the minimal 
requirements to activate TLR9.

•	 It is instead hypothesized that the thrombocytopenia associated with imetelstat may result 
from on-target mechanisms. Other studies of imetelstat have demonstrated potential on-target 
mechanism for the observed thrombocytopenia.1,8,15

—— Telomerase inhibition in healthy megakaryopoiesis delays maturation of MK cells, thus reducing 
the number of MK available to produce platelets.

—— The inhibitory effects of imetelstat on CFU-MK are greater in samples from patients with ET 
compared with healthy individuals, suggesting a different mode of action of imetelstat in the 
regulation of telomerase in pathological versus normal cells.
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RESULTS
TLR Activity with Imetelstat and Positive Controls
•	 Treatment with clinically relevant concentrations of imetelstat had no stimulatory effect on TLR2, 

TLR3, TLR4, TLR5, TLR7, or TLR9 (Figure 6).

•	 Treatment with imetelstat caused induction of TLR8 that was higher than that of the untreated 
control, but the observed increase was substantially lower than in the positive control (Figure 6C).

OBJECTIVE
•	 To assess whether imetelstat activates TLRs.

MATERIALS AND METHODS
NFκB-Inducible SEAP Reporter Assay for TLR Activity
•	 HEK293 cell lines stably co-expressing a human TLR gene (TLR2, -3, -4, -5, -7, -8, or -9) and an 

NFκB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene were used to test 
whether experimental agents activate TLR signaling (Figure 5).

•	 Positive control ligands for TLR activation
—— hTLR2: heat-killed Lysteria monocytogenes at 108 cells/mL

—— hTLR3: Poly(I:C) HMW, 1 μg/mL

—— hTLR4: Escherichia coli K12 LPS, 100 ng/mL

—— hTLR5: Salmonella typhimurium flagellin, 100 ng/mL

—— hTLR7: Imiquimod, 1 µg/mL

—— hTLR8: CL075, 1 μg/mL

—— hTLR9: CpG ODN 2006 at 100 ng/mL

•	 Experimental agentsa

—— Imetelstat: 	 5′-R-TAGGGTTAGACAA-NH2-3′

—— Mismatch oligo: 	 5′-R-TAGGTGTAAGCAA-NH2-3′

—— Sense oligo: 	 5′-AACAGATTGGGAT-R-3′
aR in oligonucleotide sequences refers to the covalently bound lipophilic (palmitoyl) group of the molecules.

DISCUSSION
Proposed Mechanism of Action of Imetelstat in Patients With MPN
•	 Imetelstat affects normal megakaryopoiesis (Figure 7)14 by delaying terminal maturation 

of megakaryocyte (MK) precursor cells and creating an accumulation of immature MK cells  
(Figure 8).8

—— Physiologic megakaryocytic differentiation requires upregulation of telomerase activity14 and 
imetelstat inhibits telomerase activity.8

—— Ex vivo studies have provided evidence that the propensity for imetelstat to induce 
thrombocytopenia in patients with MPN results from imetelstat blocking the terminal 
maturation of normal MK precursors.8

—— Imetelstat inhibition of hTERT and telomerase activity is concurrent with effects on MK 
maturation.8

—— Reduction of the number mature MK cells with imetelstat treatment could then reduce 
production of platelets.

•	 Furthermore, by inhibiting telomerase activity, imetelstat treatment in vitro impairs MK polyploidization 
and morphologic maturation.8

•	 Imetelstat treatment ex vivo preferentially inhibits MK colony-forming units (CFU‑MK) in samples 
from patients with MPN but not CFU-MK from healthy individuals (Figure 9).8,15

•	 Inhibition of telomerase and clonal proliferation of MK was also demonstrated in samples from 
patients with ET in the phase 2 study of imetelstat (Figure 10 and Table 1).1

•	 Toll-like receptors (TLRs) are proteins with domains that recognize pathogen-associated molecular 
patterns and stimulate downstream signaling to trigger innate immune responses9,10 (Figure 3).
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Figure 3. The TLR signaling pathway
Figure included with permission.10
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Figure 2. Imetelstat is a direct competitive inhibitor of telomerase, with downstream 
reductions in hTERT, and telomere length 
C, control; I, imetelstat; MC, mismatch control; hTERT, human telomerase reverse transcriptase;  
PARP, poly ADP ribose polymerase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase. 
aUntreated control; bMM1 mismatch; cS7S mismatch.
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Figure 10. Telomerase is inhibited 
in patients with ET treated with 
imetelstat in a phase 2 trial1

Predose vs 24 hours postdose  
(7.5 mg/kg - 11.7 mg/kg) telomerase activity 
in 6 patients (3 with samples at 1 cycle  
and 3 with 2-3 cycles). Telomerase activity 
was reduced on average by 36%  
(P < 0.001 by pairwise permutation test).

Figure included with permission.1
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Figure 7. The megakaryocytopoietic developmental pathway14

Table 1. Imetelstat inhibits clonal cellular 
proliferation in patients with ET treated with 
imetelstat (7.5 mg/kg - 11.7 mg/kg) in a  
phase 2 trial, as measured by CFU-MK assay1

Patient 
number

Colonies at baseline 
(absolute number  

± SEM)

Colonies at 1 
month (absolute 
number ± SEM)

5 22.7 ± 0.7 1.7 ± 0.9

9 8.0 ± 1.6 0.3 ± 0.3

10 16.3 ± 0.7 8.1 ± 4.0

11 73.7 ± 7.0 6.0 ± 0.6

15 > 50 7.7 ± 1.9

SEM, standard error of the mean.

Figure 1. Imetelstat 
sequence is short, unlike 
antisense agents

Imetelstat 13-mer3  
5′-TAGGGTTAGACAA-3′

Mipomersin 20-mer4,a

5′-G*-C*-C*-U*-C*-dA-dG-dT-dC-dT-dG-
dmC-dT-dT-dmC-G*-C*-A*-C*-C*-3′
[d = 2′-deoxy, * = 2′-O-(2-methoxyethyl)]

Genasense Bcl-2 inhibitor 18-mer5,b

5′-TCTCCCAGCGTGCGCCAT-3′

ISIS 22783 Bcl-xL inhibitor 20-mer5,b

5′-CTGGATCCAAGGCTCTAGGT-3′

aApproved cholesterol-reducing agent. Asterisks in
nucleotide sequence denote 2′-O-(2-methoxyethyl) 
nucleosides.
bInvestigational cancer therapies.
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Figure 9. CFU-MK cells from patients with MPN are more sensitive to treatment  
with imetelstat than CFU-MK cells from healthy individuals
A. CFU-MK formation by peripheral blood mononuclear cells from healthy controls (HC, n = 4) and from 
patients with MPN (n = 11) grown in the presence of the inactive (MM1) or active drug (imetelstat).8  
B. Dose-response analysis in primary cells from patients with ET compared with healthy individuals.15 

Figures included with permission.8,15

A B

Figure 8. Imetelstat affects megakaryocytopoiesis ex vivo
A. Experimental design and method. Cells were suspended in QBSF-60 serum free-based MK differentiation 
medium (Quality Biological, Inc., Gaithersburg, MD) supplemented with 50 ng/mL thrombopoietin (TPO) 
and 50 ng/mL stem cell factor (SCF) for 7 days then allowed to mature for 7 additional days in fresh media 
supplemented with 50 ng/mL TPO only. B. Treatment with imetelstat during MK differentiation of CD34+ 
cells from healthy donors results in accumulation of immature CD34+/CD41+ MK and reduced number of 
mature CD41+/CD42+ MK, suggesting a delay in MK maturation. Flow cytometric analyses of Day 7 and Day 
14 MK cultures generated in the absence (Untreated) and in the presence of the inactive (MM1) or active 
drug (Imetelstat). MNC, mononuclear cells. 

Figures included with permission.8
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SUMMARY AND CONCLUSIONS

 Imetelstat-mediated inhibition of telomerase affects normal megakaryopoiesis by blocking the
terminal maturation of CD34+/CD41+ MK precursors, providing a possible explanation for
Imetelstat’s propensity to induce thrombocytopenia in patients with normal marrow.

 Imetelstat treatment inhibited the ability of MPN CD34+ cells but not normal CD34+ cells to
form CFU-MK colonies and drug treatment reduced the numbers of malignant MK generated.

We propose that the amelioration of fibrosis observed in a clinical trial of MF patients treated
with Imetelstat might be due to, at least in part, two potential modes of action:
1) inhibiting malignant MK progenitors cells 
2) preventing terminal MK maturation thus depleting the pool of mature MK which are the 
major source of fibrogenic cytokines in MF 
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Imetelstat is a telomerase inhibitor which has been shown to have therapeutic activity in patients with
myelofibrosis (MF) (Tefferi A. et al., 2013 ASH Annual Meeting, Abstract 662) and essential thrombocythemia
(ET) (Baerlocher G. et al., 2012 ASH Annual Meeting, Abstract 179). In clinical trials involving patients with a
variety of other malignancies, the primary dose-limiting toxicity of GRN163L has been thrombocytopenia. We
utilized GRN163L in order to explore the possible role of telomerase on human megakaryocytes (MK) and the
mechanisms underlying the drug’s inhibitory effects on platelet production. MK were generated from normal
primary CD34+ cells using an ex vivo culture system previously described by our laboratory (Iancu-Rubin C. et
al, Blood 2011, 117:17; 4580-4589). We first showed that both telomerase activity and the expression of its
catalytic unit hTERT were elevated in proliferating normal CD34+ cells, declined transiently during the initial
stages of MK differentiation but were then partially restored during the final stages of terminal maturation.
Treatment of normal CD34+ cells with GRN163L did not affect the numbers of CFU-MK assayed. Furthermore,
exposure to GRN163L during the first 7 days in a liquid culture system did not interfere with the ability of
CD34+ cells to commit to MK. When the same cultures were allowed to mature for 7 additional days, the
proportion of CD34+/CD41+ MK precursors in drug-treated cultures was twice that observed in control and the
drug-treated cultures contained 70% fewer mature CD41+/CD42b+ MK than control cultures. The inhibitory
effects of GRN163L on MK maturation were supported by observations showing that the cultures treated with
the drug contained 60% fewer polyploid MK than control cultures. These results suggest that that GRN163L-
mediated inhibition of telomerase does not affect normal MK progenitors but blocks the maturation of MK
precursor cells.

Previous studies have shown that GRN163L inhibits neoplastic CFU-MK colony formation by CD34+ cells from
patients with ET (Brunold C. et al., 2011 ASH Annual Meeting, Abstract 3843). We, therefore, examined the
effects of GRN163L on malignant MK from patients with MF and ET. Unlike normal CD34+ cells, treatment of
MPN PB-MNCs with GRN163L decreased the numbers of assayable CFU-MK from 6 out of 11 patients. CFU-MK
colony formation by PB-MNCs from these 6 patients was reduced by 33% (ranging from 13% to 50% reduction
in CFU-MK formation) as compared to PB-MNCs treated with an inactive form of the drug (p value= 0.00473).
Of note, in two out of 5 patients in which the total number of CFU-MK was not affected by GRN163L
treatment, the drug decreased the size of the CFU-MK colonies formed. The ability of MPN PB-MNCs to
differentiate into MK was next assessed. Although the total number of cells in PB-MNC liquid cultures exposed
to GRN163L was decreased as compared to those treated with the inactive drug (n=6; p value=0.03204), the
proportion of CD34+/CD41+ MK precursors generated was not significantly affected. We then evaluated the
effects of GRN163L on the genotype of MPN MK generated in the presence and absence of GRN163L by
assessing the JAK2V617F allele burden. Treatment with GRN163L but not the inactive form of the drug reduced
the JAK2V617F allele burden in MK derived from two patients: in one patient, JAK2V617F allele burden in MK
generated in the presence of the inactive drug was 91.86% while MK generated in the presence of GRN163L
was 19.75%; MK generated from a second patient had a JAK2V617F allele burden of 10.84% in the presence of
the inactive drug which was reduced to 2.14% in the presence of GRN163L.
We conclude that GRN163L-mediated inhibition of telomerase affects normal megakaryopoiesis by blocking
the terminal maturation of CD34+/CD41+ MK precursors, providing a possible explanation for GRN163L’s
propensity to induce thrombocytopenia in patients with normal marrow. By contrast, GRN163L treatment
inhibited the ability of MPN CD34+ cells but not normal CD34+ cells to form CFU-MK colonies and drug
treatment reduced the numbers of malignant MKs generated. We propose that the amelioration of fibrosis
observed in a clinical trial of MF patients treated with GRN163L might be due to, at least in part, two potential
modes of action: 1) inhibiting malignant MK progenitors cells and 2) preventing terminal MK maturation thus
depleting the pool of mature MKs which are the major source of fibrogenic cytokines in MF.
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Figure 4. Imetelstat inhibits telomerase expression (hTERT) and activity (TA) and induces DNA damage in HEL JAK2V617F cells.
(A) Western blot analyses of protein lysate from HEL JAK2V617F cells untreated (Un) or treated with GRN163L or with its inactive form (MM1).
(B) hTERT mRNA expression and telomerase activity (TA) in untreated and treated HEL JAK2V617F cells. TA was evaluated by a PCR-based assay in
which the relative enzymatic activity is determined based on the enzyme’s ability to synthetize telomeric repeats which were quantified by PCR;
the higher the number of PCR cycles (Ct SYBR) required for telomeric sequences amplification, the lower the TA.
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Figure 6. Imetelstat impairs MPN megakaryopoiesis by reducing the number of MK generated and by preventing their terminal
maturation. (A) and (B) PB-MNCs from MPN patients (n=8) were plated in liquid culture in the absence (untreated) and in the presence
of inactive (MM1) or active drug (GRN163L). After 7 days, viable cells were enumerated (A) and the percentage of CD34+/CD41+ MK
precursors (B) was determined by flow cytometry. (C) Representative examples of dot plot analyses of mature MK (CD41+/CD42+)
generated after 14 days in culture by PB-MNC from two MPN patients.

Table 2. Imetelstat treatment reduces JAK2V617F allele burden in MK
derived from MPN MNC. Mutated JAK2 allele burden was determined
on DNA extracted from untreated or GRN163L-treated MK cultures
generated by PB-MNC from three JAK2V617F-positive MPN patients.

p=0.055

3-13% reduction
Ave. = 6.25%

p=0.040

13-50% reduction
Ave. = 33.08%

p=0.0047
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Figure 5. MPN CFU-MK formation is more sensitive to Imetelstat treatment than
CFU-MK formation by healthy controls (HC). (A) and (B) CFU-MK formation by PB-
MNC from healthy controls (HC, n=4)) and from MPN patients (n=11) grown in the
presence of the inactive (MM1) or active drug (GRN163L) as described in Table 1.
(C ) Representative example of CFU-MK formed by MNC from PT141 in which the size
but not the number of CFU-MK was affected by the drug.

A B C

Table 1. Imetelstat treatment inhibits CFU-MK formation by
MPN MNC. PB-MNC from MPN patients were plated in
collagen-based MegaCult media (Stem Cell Technologies) in
the absence or presence of drugs. After 14 days, CFU-MK
formed were labeled with anti-GPIIIa/IIb antibodies and
enumerated. CFU-MK formation efficiency was determined by
normalizing the numbers of CFU-MK found in treated cultures
to those found in untreated conditions which were considered
100% CFU-MK formation efficiency.

Efficiency of CFU-MK
formation

MM1 GRN163L Outcome

Pt2 99.3 54.8 45% reduction

Pt3 92 94 No response

Pt141 78.5 91
No response for total CFU-MK number
Reduced CFU-MK size

Pt59 54.8 66
No response for total CFU-MK number
Reduced CFU-MK size

Pt49 99 49.6 50% reduction 

Pt138 145 97.9 32.5% reduction

Pt5 9.5 20.5 No Response

Pt94 129.7 141.4 No response

Pt7 96.6 93 13% reduction

PT8 97.5 84.1 14% reduction

Pt9 119.6 66.6 44% reduction 

A B C

Absolute cell number (x105) 

JAK2V617F Allele Burden (%)

Untreated GRN163L-treated

Pt6 34.37 19.75

Pt9 7.14 2.14

Pt141 45.17 42.14
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