

### INTRODUCTION

- Myelodysplastic syndromes (MDS) are characterized by clonal myeloproliferation arising from malignant progenitor cell clones that have multiple genetic abnormalities.<sup>1</sup>
- Patients with red blood cell (RBC) transfusion-dependent (TD), lower risk MDS (LR-MDS) that has relapsed or is refractory to erythropoiesis-stimulating agents (ESAs) have limited treatment options. New approaches are needed.
- Higher telomerase activity, overexpression of human telomerase reverse transcriptase (hTERT) and shorter telomeres predict for shorter overall survival in LR-MDS.<sup>2, 3</sup>
- Imetelstat is a 13-mer lipid-conjugated oligonucleotide that specifically targets the RNA template of human telomerase and is a potent, first-in-class competitive inhibitor of telomerase enzymatic activity<sup>4, 5</sup> (Figure 1). It has disease-modifying potential to selectively kill malignant stem and progenitor cells enabling normal blood cell production (Figure 2). <sup>6,7</sup>
- IMerge (MDS3001, NCT02598661) is a Phase 2/3 global study of imetelstat for red blood cell (RBC) transfusion dependent (TD), non-del(5q) patients with ESA-R/R LR-MDS. Phase 2 results indicated that imetelstat achieved durable transfusion independence (TI) with a manageable safety profile.<sup>8</sup> With a median follow-up of 24 months for Phase 2, 42%, 32% and 29% of 38 patients achieved  $\geq$ 8-week (w),  $\geq$ 24-w and 1-year (y) TI, respectively.<sup>9</sup>

#### Figure 1. Imetelstat binds to the RNA template as a competitive inhibitor to prevent maintenance of telomeres

Figure 2. Imetelstat selective killing of malignant stem and progenitor cells enabling normal blood cell production



# **OBJECTIVES**

• To evaluate clinical efficacy of imetelstat in molecularly defined subtypes based on cytogenetic and mutation profiles.

### METHODS

- Bone marrow aspirates from screening were used for cytogenetic analysis by karyotyping.
- Peripheral blood samples were collected to analyze mutations by next-generation sequencing using the Illumina TruSight Myeloid Panel of 54 genes.
- Correlation analyses between molecular profiles and clinical efficacy, including TI ≥8-w,  $\geq$ 24-w,  $\geq$ 1-y, and hematologic improvement-erythroid (HI-E) response per International Working Group 2006 guidelines, were performed for patients in the Phase 2 part of IMerge study.

# EFFICACY OF IMETELSTAT IS INDEPENDENT OF MOLECULAR SUBTYPES IN HEAVILY TRANSFUSED NON-DEL(5Q) LOWER RISK MDS (LR-MDS) RELAPSED/REFRACTORY (R/R) TO ERYTHROPOIESIS STIMULATING AGENTS (ESA)

<u>U.Platzbecker<sup>1</sup>, P. Fenaux<sup>2</sup>, K. V. Eygen<sup>3</sup>, A. Raza<sup>4</sup>, U. Germing<sup>5</sup>, P. Font<sup>6</sup>, M. Diez-Campelo<sup>7</sup>, S. Thepot<sup>8</sup>, E. Vellenga<sup>9</sup>, M. M. Patnaik <sup>10</sup>, J. H. Jang<sup>11</sup>,</u> L. Sherman<sup>12</sup>, S. Dougherty<sup>12</sup>, T. Berry<sup>12</sup>, F. Feller<sup>12</sup>, L. Sun<sup>12</sup>, Y. Wan<sup>12</sup>, A. Rizo<sup>12</sup>, F. Huang<sup>12</sup>, V. Santini<sup>13</sup>

<sup>1</sup>University Clinic Leipzig, Leipzig, Germany, <sup>2</sup>Hospital Saint-Louis, University, Belgium, <sup>4</sup>Columbia University Medical Center, New York, United States, <sup>5</sup>Heinrich-Heine-Universität, Düsseldorf, Germany, <sup>6</sup>Hospital General Universitario Gregorio Marañon, Madrid, <sup>7</sup>The University Hospital of Salamanca, Spain, <sup>8</sup>CHU Angers, France, <sup>9</sup>University Medical Center Groningen, Groningen, Netherlands, <sup>10</sup>Mayo Clinic, Rochester, MN, United States, <sup>11</sup>Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic Of, <sup>12</sup>Geron Corporation, Parsippany, NJ, United States, <sup>13</sup>AOU Careggi-University of Florence, Florence, Italy

### RESULTS

#### Table 1. Durable TI, hematologic improvement with imetelstat treatment

| Parameters                                                                                                                                | n = 38                      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| 8-week TI, n (%)                                                                                                                          | <b>16 (42)</b>              |  |  |  |  |  |
| Time to onset of 8-week TI, weeks, median (range)                                                                                         | 8.3 (0.1-40.7)              |  |  |  |  |  |
| Duration of TI, weeks, median (95% CI) <sup>a</sup>                                                                                       | <b>88.0 (23.1 – 140.9*)</b> |  |  |  |  |  |
| Cumulative duration of TI ≥ 8 weeks <sup>b</sup> , median (95% CI) <sup>a</sup>                                                           | 92.3 (42.9, 140.9)          |  |  |  |  |  |
| Hb rise ≥ 3.0 g/dL during TIc, n (%)                                                                                                      | 12 (32)                     |  |  |  |  |  |
| 24-week TI, n (%)                                                                                                                         | <b>12 (32)</b>              |  |  |  |  |  |
| Hb rise ≥ 3.0 g/dL during TI <sup>c</sup> , n (%)                                                                                         | 11 (29)                     |  |  |  |  |  |
| HI-E per IWG 2006, n (%)                                                                                                                  | <b>26 (68)</b>              |  |  |  |  |  |
| ≥1.5 g/dL increase in Hb lasting ≥ 8 weeks <sup>d</sup> , n (%)                                                                           | 13 (34)                     |  |  |  |  |  |
| Transfusion reduction by ≥ 4 units/8 weeks, n (%)                                                                                         | 26 (68)                     |  |  |  |  |  |
| Duration of HI-E, weeks, median (95% CI) <sup>a</sup>                                                                                     | <b>92.7 (37.1, 149.4)</b> ) |  |  |  |  |  |
| Major and Minor Response per IWG 2018<br>Major response: 16-week TI, n (%)<br>Minor response: ≥ 50% transfusion reduction/16 weeks, n (%) | <b>14 (37)</b><br>21 (55)   |  |  |  |  |  |

#### Figure 3. Mutation profile and risk groups vs clinical response (N=31 with sequencing data for mutations)

| IPSS          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cytogenetics  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| SF3B1         |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| SRSF2         |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| TET2          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| DNMT3A        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| ASXL1         |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| TP53          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| RUNX1         |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| КІТ           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| NRAS          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| JAK2          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| MPL           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| #of Mutation  | 0 | 2 | 1 | 3 | 2 | 2 | 4 | 0 | 1 | 3 | 1 | 3 | 1 | 1 | 3 | 2 |
| ≥8-week TI    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| ≥24-week TI   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| ≥ 1 year TI   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| HI-E response |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

# cytogenetic risk (B) groups



### Figure 5. Clinical response was independent of mutation status (A), or mutations in genes involved in different biological functions (B)



38 patients with non-del(5a) LR MDS R/R to ESA Clinical cutoff for analyses: 4 Feb 2020 Kaplan Meier method: <sup>b</sup> Cumulative Duration of TI  $\geq$  8 weeks is defined as the sum of all periods of  $TI \ge 8$  weeks during the <sup>2</sup> Maximum Hb rise of  $\geq 3g/dL$  from pretreatment level (pretreatment level defined as mean Hb / 8 <sup>d</sup> All patients also achieved 8-week TI. CI, confidence interval; Hb, hemoglobin HI-E, hematologic improvement-erythroic IWG 2006, International Working Group Response Criteria 2006: TI. Transfusion Independence

\*Longest TI > 2.7 years





### Figure 6. HI-E response was seen in patients with different SF3B1 hot spot mutations, durable TI was observed in patients with all SF3B1 hot spot mutations except K666R



## **SUMMARY**

- with all hot spot mutations (Fig. 6).

### CONCLUSIONS

Imetelstat demonstrated clinical efficacy across different molecularly defined subgroups of heavily transfused LR-MDS ESA-R/R patients, including those with poor prognosis, who have limited treatment options.

## REFERENCES

- 2. Gurkan E, et al , Leuk Res 2005; 29:1131-9.
- 4. Asai A, et al, Cancer Res 2003; 63(14):3931–3939.
- 5. Herbert BS, et al, Oncogene 2005; 24(33):5262–5268.
- 6. Mosoyan G et al. Leukemia 2017; 31(11):2458-2467
- 7. Wang X at al. Blood Adv 2018; 25;2(18):2378-2388 8. Steensma DP, et al, J Clin Oncol 2021; 39(1):48-56
- 9. Platzbecker U et al, ASH 2020 Oral presentation, Abstract #658

### **CONTACT INFORMATION**



Imetelstat treatment showed meaningful and durable TI in 38 heavily TD, non-del(5q), HMA/Len naïve, LR-MDS patients with substantial increase in hemoglobin (**Table 1**).

• No statistically significant difference in response rate was observed in patients between IPSS low and Int-1 risk group or between very good/good and int poor cytogenetic risk groups, though a high rate of TI and HI-E was observed in the poor risk group (Fig. 4).

• Of 31/38 patients with baseline mutation data, 28 (90.3%) patients had at least one mutation, among which 15 (53.6%), 8 (28.6%) and 5 (17.9%) patients had 1, 2 and  $\geq 3$ mutations, respectively. 3 patients had no mutation detected (Fig. 3). Clinical response was independent of mutation status, or number of mutations (Fig. 5).

• The most frequently mutated gene was SF3B1 (87.1%, n=27), consistent with the predominance of ring sideroblast phenotypes (n=23). SF3B1 hot spot mutations were detected: 3 (11.1%) E622D, 3 (11.1%) R625C/L, 4 (14.8%) H662Q, 4 (14.8%) K666R, 12 (44.4%) K700E and 1 (3.7%%) G740E, respectively. Durable TI was observed in patients with these hot spot mutations except K666R, and HI-E response was seen in patients

1. Sperling AS, et al, Nat Rev Cancer 2017; 17(1): 5–19. 3. Mittelman M, et al, Leukemia Research 34 (2010) 1551–1555.

• IMerge (MDS3001): <u>https://www.geron.com/patients/imerge-study</u> ClinicalTrials.gov Identifier:NCT02598661; Email <u>mds3001-info@geron.com</u>

