

9 June 2023 Presentation ID S169 Session 417: MPN and MDS: Targeting red cells and platelets

Modulation of the immune landscape in lowerrisk MDS with imetelstat-induced transfusion independency

Nicolas Chapuis, David Rombaut, Yannick Simoni, Christian Daveaux,

Aurélien Corneau, Fei Huang, Michaela Fontenay

Conflict of interest

• Research funding from Geron Corp.

Introduction

- Around 50% of lower-risk MDS patients are resistant to ESA ¹
- Innate immune signaling and inflammation underlies MDS pathogenesis ²
- Targeted therapies for MDS-5q or MDS-SF3B1 are available ^{3,4}
- Imetelstat, a telomerase inhibitor, ^{5,6} is in clinical development

Results from IMerge (MDS3001, NCT02598661):

- <u>Phase II (open-label, single-arm study)</u>
 - 23% of 57 highly transfused LR-MDS achieved 24-wk transfusion independency (TI) with a median duration of 65 wk⁷
 - 65% obtained hematological improvement (HI)-erythroid ⁷
 - - ≥1 year sustained, continuous TI in 29% of patients with transfusion dependent, non-del(5q) LR-MDS relapsed/refractory to ESAs and lenalidomide/HMA naive ⁸
- <u>Phase III (Double blind, randomized, imetelstat vs placebo) ⁹</u> Imetelstat demonstrated highly statistically significant and clinically meaningful efficacy compared with placebo:
 - 8-week TI= 40% vs 15%,
 - 24-week TI=28% vs 3.3%
 - 1-year TI = 18% vs. 1.7%

Imetelstat, a 13-mer oligonucleotide, is a direct and competitive inhibitor of telomerase activity ^{4,5}

¹ Park S et al, Blood 2008; ² Trowbridge & Starczynowski, JEM 2021; ³ List AF et al, N Engl J Med 2005; ⁴ Fenaux P et al, 2020; ⁵Asai A, et al. Cancer Res. 2003; ⁶Herbert BS, et al. Oncogene. 2005; ⁷Steensma DP et al, J Clin Oncol 2021; ⁸ Platzbecker U, et al, ASH 2022, Abstract #459; ⁹ Platzbecker U, et al, EHA 2023, S165

Study Objectives, Patient Samples and Methods

Objectives: Identify biological pathways associated with the clinical response in a subset of patients enrolled in the imetelstat MDS3001 phase II clinical trial.

Patient samples:

- 10 LR-MDS patients: 6 Transfusion Independence Responder (TIR), 4 Transfusion Independence Non-Responder (TINR) with a median follow-up of 140.7 weeks
- Samples at baseline and 4-7 months post-imetelstat treatment (total 24 samples)

Methods

- **BMMNC transcriptomes** were analyzed by RNA-sequencing
- PBMC immune profiles were assessed by mass cytometry (CYToF) using the Maxpar[®] Direct Immune Profiling assay
- **Cytokine profiling** was performed using quantitative multiplex panel of 47 cytokines in PB plasma samples collected from 21 patients (15 TIR, 6 TINR) at 2 to 5 time points.

Patients' Baseline Characteristics and Clinical Response

ID	Age	Gender	WHO	Karyotype	Mutations	IPSS	Treatment duration in cycles	Follow-up (wks)	Longest transfusion free interval (wks)	≥1-year Transfusion independency
1	78	М	MDS-RS	46,XY	<i>SF3B1</i> _E622D	Intermediate-1	33	241,3	140,9	Yes
2	62	F	MDS-MLD	46,XX,del(5)(q13;q3 3)	<i>JAK2</i> _V617F	Low	35	136,3	65,1	Yes
3	60	F	del(5q)	46,XX,del(5)(q13;q3 3)	<i>TP</i> 53_R248W	Low	6	48,6	5	No
4	60	F	MDS-RS	46,XX	<i>SF3B1</i> _E622D	Low	18	82,4	79,3	Yes
5	71	F	MDS-RS	ND	No mutation	Low	29	223	6,9	No
6	69	F	MDS-RS-MLD	46,XX	<i>SF3B1_</i> K666R	Low	8	144,3	3,6	No
7	81	F	MDS-RS-MLD	46,XX	<i>KIT_</i> M541L <i>SF3B1_</i> R625C	Intermediate-1	32	140,3	76,3	Yes
8	60	F	MDS-RS-MLD	47,XX,+8	SF3B1_K700E	Intermediate-1	26	146,3	72,7	Yes
9	79	М	MDS-RS-MLD	47,XY,+8	SF3B1_K700E	Intermediate-1	23	128	114,7	Yes
10	66	М	MDS-MLD	46,XY	<i>JAK2_</i> V617F <i>SRSF2_</i> P95H	Low	6	141,1	3,7	No

Low innate immune features and T cell activation at baseline in ≥1 year TI Responders (TIR) Compared to Non-Responders (TINR)

Bone marrow MNC transcriptomes in TIR (n=6) vs TINR (n=4):

1185 differentially expressed genes (P = 0.05; $\log_2(FC) = 111$) 1150 down (blue) & 35 up-regulated (red)

Gene set enrichment

positive regulation of interferon gamma production -MYD88 dependent toll like receptor signaling pathwaypyroptosis -

T cell mediated cytotoxicity-

positive regulation of interferon beta production inflammasome complex assembly-

negative regulation of I kappaB kinase NF-kappaB signaling positive regulation of macrophage cytokine production -

-log10(Adjusted p-value)

High heterogeneity of immune cells repartition at baseline

Blood samples at baseline (n=9)

Maxpar[®] Direct Immune Profiling assay (CyTOF)

Unsupervised analysis in TIR (n=6) vs TINR (n=3)

- High heterogeneity between samples in both TIR and TINR
- No differences of B, T and NK cell proportion
- Difference in monocytes repartition

Low inflammatory features and immune suppression in TIR at baseline

Blood samples at baseline (n=9)

Maxpar[®] Direct Immune Profiling assay (CyTOF)

-

<u>Unsupervised analysis in TIR</u> (n=6) vs TINR (n=3)

Mo CD16+ CD14+/low

- High heterogeneity between samples in both TIR and TINR
- No differences of B, T and NK cell proportion
- Difference in monocytes repartition

Low inflammatory features in TIR at baseline demonstrated by relative low levels of CXCL9 and IL-18

Cytokine profiling

(Milliplex[®] kit) in PB plasma samples collected at baseline

Analysis in TIR (n=15) vs TINR (n=6)

 No difference at baseline for plasmatic amounts of IFNγ, IL-4, IL-5, IL-6 **Pro-Inflammatory**

 Some monocyte-derived chemokine or interleukin are less expressed in TIR

Immune cell activation associates with the response to Imetelstat

Bone marrow MNC transcriptomes in TIR (n=6) post treatment vs baseline:

127 differentially expressed genes (P = 0.05; $log_2(FC) = I1I$)

37 down (blue) & 90 up-regulated (red)

neutrophil mediated immunity-B cell receptor signaling pathwaysuperoxide anion generation myeloid cell activation involved in immune response -T cell activation involved in immune response negative regulation of interleukin 6 production negative regulation of interleukin 1 beta production -

Imetelstat induces modification of immune cells repartition in TIR

Imetelstat induces modification of immune cells repartition in TIR

<u>In TIR (n=6) :</u>

- Modification of repartition of monocytes subpopulations with decreased of HLA-DR-/low monocytes
- Increased of CD8+ terminal effector T cells
- Increased of B cells

Early modulation of immunosuppressive S100A8/A9 and proinflammatory cytokines after 2 cycles of imetelstat treatment

TIR

TINR

Pro-Inflammatory

TINR

TIR

B cells Stimulation

Conclusion

-

- At baseline TIR are characterized by immune suppression, low innate immune features and T cell activation attested in blood by :
 - Increase proportion of immunosuppressive monocytes (HLA-DR-/low)
 - Lower level of some pro-inflammatory chemokines (IL-18 and CXCL9)
 - Lower level of pro-inflammatory monocytes (CD16+)

Imetelstat treatment induces in TIR an immune cell activation attested in blood by remodeling of:

- immune cell repartition (monocytes, T CD8+ cells and B cells)
- pro-inflammatory and immunosuppressive cytokines

Future studies will be necessary to

- Determine the contribution of immunomodulation to the erythroid response
- Validate theranostic and predictive biomarkers of response to imetelstat treatment

Acknowledgments

 Normal and pathological hematopoiesis team members

Michaela Fontenay

David Rombaut

Yannick Simoni

Christian Daveaux

Hôpital Cochin Port-Royal AP-HP Université Paris Cité

Geron corp

Fei Huang

Institut Cochin Platform
 Franck Letourneur

Institut Cochin

CyPS Cytof Platform of Pitié-Salpétrière
 Aurélien Corneau

Immunomonitoring platform
 Institut Mondor for biomedical research
 Mathieu Surenaud

- The authors thank
 - all the patients and families for their participation in the IMerge Phase 2 portion of the clinical study
 - all investigators and their staff for the collaboration and commitment to the clinical study

David P Steensma Pierre Fenaux Koen Van Eygen Azra Raza Valeria Santini Ulrich Germing Patricia Font Maria Diez-Campelo Sylvain Thepot

Edo Vellenga, Mrinal M Patnaik Jun Ho Jang Helen Varsos Jacqueline Bussolari Esther Rose Aleksandra Rizo Uwe Platzbecker