Impact of Mutational Status on Clinical Response to Imetelstat in Patients With Lower-Risk **Myelodysplastic Syndromes in the IMerge Phase 3 Study**

Valeria Santini,¹ Amer M. Zeidan,² Pierre Fenaux,³ Yazan F. Madanat,⁴ Tymara Berry,⁵ Faye Feller,⁵ Libo Sun,⁵ Ving Wan,⁵ Fei Huang,⁵ Michael R. Savona,⁶ and Uwe Platzbecker⁷

¹MDS Unit, Hematology, AOUC, University of Florence, Italy; ²Yale School of Medicine and Yale Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ³Hôpital Saint-Louis, University of Florence, Italy; ²Yale School of Medicine and Yale Cancer Center, Vale University, New Haven, CT, USA; ³Hôpital Saint-Louis, University of Florence, Italy; ²Yale School of Medicine and Yale Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Harold C. Simmons Center, Dallas, ⁵Geron Corporation, Parsippany, NJ, USA; ⁶Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; ⁷Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany

Introduction

- In patients with MDS, *SF3B1* (involved in RNA splicing), *TET2*, DNMT3A, and ASXL1 (involved in epigenetic regulation) are commonly mutated genes, and quantification of these and other gene mutations indicates disease burden and guides disease management¹⁻⁹
- In particular, a mechanistic link between the high prevalence of the SF3B1 mutation in MDS with ring sideroblasts has been established^{1-3,10}
- Imetelstat is a first-in-class, direct and competitive inhibitor of telomerase activity that specifically targets dysplastic clones, enabling recovery of effective hematopoiesis¹¹⁻¹⁴
- In the IMerge phase 3 clinical trial (NCT02598661) of patients with RBC transfusion-dependent non-del(5q) LR-MDS relapsed/ refractory to/ineligible for ESAs, imetelstat showed higher RBC-TI for \geq 8 weeks, \geq 24 weeks, and \geq 1 year (40%, 28%, and 18%) than placebo (15%, 3%, and 2%)¹⁵
- Additionally, compared with placebo, treatment with imetelstat improved cytogenetic response rate, had a higher rate of patients achieving \geq 50% reduction in bone marrow RS cells (41% vs 10%) and greater VAF reduction of the SF3B1, TET2, DNMT3A, and ASXL1 genes that correlated with clinical end points of RBC-TI response, longer duration of TI, and increase in hemoglobin levels¹⁶

Aim

To evaluate the impact of MDS-associated mutations on the clinical efficacy (RBC-TI response rates) of imetelstat in patients with LR-MDS enrolled in IMerge

Methods

- Mutations of 36 genes associated with MDS were tested by NGS on DNA samples from peripheral blood collected at study entry
- After DNA extraction from leukocytes, a targeted, ampliconbased NGS was performed at Quest Diagnostics using DNA bait-capture methodology on the NextSeq[®] (Illumina[®]) platform and a LeukoVantage[®] MDS Gene Panel covering 36 MDS-relevant genes
- Spectrum of SF3B1 hot-spot mutations included E622D, R625C/L/G, H662Q/N/D/Y, T663P, K666R/T/Q/N, K700E, A744P, and E783K
- Additional analysis of RBC-TI responses was performed across 4 mutation subgroups, defined based on genes involved in different biological functions,¹⁷ including:
- RNA spliceosome (*SF3B1*, *U2AF1*, *SRSF2*, and *ZRSR2*)
- Epigenetic modifiers (*TET2*, *DNMT3A*, *IDH1*, *IDH2*, *ASXL1*, and *EZH2*) – Transcription regulation (*RUNX1, BCOR, ETV6, SETBP1, GATA2,* CEBPA, PHF6, NPM1, and STAT3)
- Receptors/kinases (CSF3R, FLT3, JAK2, KRAS, KIT, MPL, NRAS, and *PTPN11*)
- Poor-prognosis mutation was defined as presence of *TP53*, *EZH2*, *ETV6*, *RUNX1*, or *ASXL1*¹⁸
- For between-group comparisons within each mutation status group, the *P* value was based on Fisher exact test

Results

- Patients ≥1 mutat >1 mutat >2 mutat
- >3 mutat *SF3B1* mu
- TET2 mut
- DNMT3A
- ASXL1 m
- CUX1 mu
- **RNA splic**
- Epigenet
- Transcrip Receptor
- Poor-pro

RBC-TI by number of baseline mutations

- ר 100 80 -20

Baseline mutational profile

• As of October 13, 2022, baseline mutation data were available in 165 of 178 patients enrolled in IMerge phase 3; mutated genes with frequency >10% in this study are listed in **Table 1** • Of patients with mutation data, 161 (97.6%) had ≥1 mutation detected: 107 patients (97.3%) in the imetelstat-treated group and 54 patients (98.2%) in the placebo-treated group • Proportions of frequently occurring mutations were well balanced between the treatment

groups (**Table 1**)

• *SF3B1* mutations were detected at baseline in nearly 75% of the patients in the imetelstattreated group and 78% of those in the placebo-treated group

• Poor-prognosis mutations were identified in 20% of samples in either treatment group: each group had 2 patients with TP53 and 2 patients with RUNX1 mutations, and there were 18 vs 6 patients with ASXL1 mutations, 2 vs 1 patient with ETV6 mutations, and 0 vs 2 patients with *EZH2* in the imetelstat- vs placebo-treated groups, respectively

Table 1. Baseline Mutational Profile

, n (%)	Imetelstat (n = 110)	Placebo (n = 55)
tion tion tions tions	107 (97.3) 75 (68.2) 33 (30.0) 9 (8.2)	54 (98.2) 38 (69.1) 15 (27.3) 7 (12.7)
utations	82 (74.5)	43 (78.2)
tations	40 (36.4)	14 (25.5)
mutations	19 (17.3)	9 (16.4)
utations	18 (16.4)	6 (10.9)
Itations	14 (12.7)	7 (12.7)
ceosome	96 (87.3)	47 (85.5)
tic modifiers	69 (62.7)	29 (52.7)
ption regulation	10 (9.1)	9 (16.4)
rs/kinases	5 (4.5)	2 (3.6)
ognosis genes	22 (20.0)	11 (20.0)

• In patients who had ≥1 mutation detected, imetelstat significantly improved the 8-week (*P* = .002) and 24-week (*P* < .001) RBC-TI response rates compared with placebo (**Fig. 1**) - Significant rate differences were also noted in patients who had >2 mutations at baseline: 45.5% vs 6.7% for ≥8-week RBC-TI (*P* = .012) and 33.3% vs 0% for ≥24-week RBC-TI (P = .014) with imetelstat vs placebo, respectively

RBC-TI rates by baseline mutation status of the most commonly mutated genes • Among patients assessed for genes commonly mutated in MDS, those harboring *SF3B1* mutations at baseline had significantly higher rates of RBC-TI responses with imetelstat vs placebo at both 8 weeks (48.8% vs 16.3%; *P* = .001) and 24 weeks (35.4% vs 2.3%; *P* < .001; **Fig. 2**) • Similar trends were seen with the other commonly mutated genes (Fig. 2) and in patients with *SF3B1* hot-spot mutations (≥ 2 patients in either group), albeit the sample size was small (**Table 2**) Figure 2. Summary of RBC-TI Response Rates by Baseline Mutation Status of the Most Commonly Mutated Genes (>10% of Patients in Either Group)

Table 2. Summary of RBC-TI Response Rates by Baseline Mutation Status of SF3B1 **Hot-Spot Mutations**

Patients, n/N (%)	≥8-Week RBC-TI		≥24-Week RBC-TI	
	Imetelstat (n = 82)	Placebo (n = 43)	Imetelstat (n = 82)	Placebo (n = 43)
E622D	2/8 (25.0)	1/2 (50.0)	2/8 (25.0)	1/2 (50.0)
R625C/L/G	4/7 (57.1)	0/5 (0)	2/7 (28.6)	0/5 (0)
H662Q/N/D/Y	7/12 (58.3)	0/5 (0)	6/12 (50.0)	0/5 (0)
T663P	2/2 (100)	0	2/2 (100)	0
K666R/T/Q/N	2/6 (33.3)	0/7 (0)	0/6 (0)	0/7 (0)
K700E	18/41 (43.9)	5/22 (22.7)	12/41 (29.3)	0/22 (0)
A744P	2/2 (100)	0	2/2 (100)	0
E783K	1/2 (50.0)	0	1/2 (50.0)	0

RBC-TI rates by baseline mutation status of 4 sets of genes involved in different biological functions

• Consistent with the presence of baseline *SF3B1* mutations, patients with mutations in genes regulating RNA spliceosome had significantly higher rates of ≥8-week and ≥24-week RBC-TI responses with imetelstat than with placebo: 43.8% vs 14.9% (P = .001) and 30.2% vs 2.1%(*P* < .001), respectively (**Fig. 3**); similar trends were noted with the other gene sets, albeit there was no significant difference between groups

Figure 3. Summary of RBC-TI Response Rates by Baseline Mutation Status of 4 Sets of Genes Involved in Different Biological Functions

• Imetelstat treatment indicated higher ≥8-week (**Table 3**) and ≥24-week RBC-TI response rates versus placebo in patients with poor-prognosis genes mutated at baseline: 31.8% vs 0% and 9.1% vs 0%, respectively

Table 3. Summary of 8-Week RBC-TI Response Rates by Baseline Mutation Status of Poor-Prognosis Genes

RBC-TI rates by baseline mutation status of poor-prognosis genes

Patients, n/N (%)	Imetelstat (n = 22)	Placebo (n = 11)
Poor prognosis	7/22 (31.8)	0/11 (0)
ASXL1 mutations	5/18 (27.8)	0/6 (0)
TP53 mutations	2/2 (100)	0/2 (0)
ETV6 mutations	1/2 (50.0)	0/1 (0)
RUNX1 mutations	0/2 (0)	0/2 (0)
EZH2 mutations	0	0/2 (0)

Conclusions

- Overall, in patients with various baseline mutational profiles, imetelstat treatment led to higher RBC-TI rates than placebo
- A significantly higher percentage of imetelstat-treated than placebo-treated patients with baseline mutations in SF3B1, a gene commonly mutated in MDS and involved in regulation of RNA spliceosome, achieved 8- and 24-week RBC-TI
- RBC-TI responses in patients receiving imetelstat occurred regardless of the presence of mutations associated with poor prognosis or the number of mutations
- RBC-TI responses with imetelstat were observed across different molecularly defined subgroups, suggesting that clinical benefit of imetelstat in patients with LR-MDS is independent of the underlying molecular pattern

REFERENCES

1. Papaemmanuil E, et al. *N Engl J Med*. 2011;365(15):1384-1395. **2.** Patnaik MM, et al. *Blood*. 2012;119(2):569-572. **3.** Visconte V, et al. Blood. 2012;120(16):3173-3186. 4. Shih AH, et al. Nat Rev Cancer. 2012;12(9):599-612. 5. Smith AE, et al. Blood. 2010;116(19):3923-3932. 6. Gangat N, et al. Am J Hematol. 2016;91(1):76-89. 7. Fattizzo B, et al. Front Oncol. 2022;12:795955. 8. Sallman DA, Padron E. Hematol Oncol Stem Cell Ther. 2016;9(3):89-95. 9. Jiang L, et al. Am J Cancer Res. 2020;10(12):4476-4487. 10. Ochi T, et al. Sci Rep. 2022;12(1):14562. 11. Asai A, et al. Cancer Res. 2003;63(14):3931-3939. 12. Herbert BS, et al. Oncogene. 2005;24(33):5262-5268. 13. Mosoyan G, et al. Leukemia. 2017;31(11):2458-2467. 14. Wang X, et al. Blood Adv. 2018;2(18):2378-2388. 15. Platzbecker U, et al. EHA 2023. Presentation S165. 16. Santini V, et al. EHA 2023. Presentation S164. 17. Cazzola M, et al. Blood. 2013;122(25):4021-4034. **18.** Bejar R, et al. *N Engl J Med*. 2011;364(26):2496-2506.

ABBREVIATIONS

ASXL1, additional sex combs like-1; BCL, B-cell lymphoma; BCOR, BCL-6 corepressor; CEBPA, CCAAT enhancer-binding protein alpha; CSF3R, colony-stimulating factor 3 receptor; CUX1, cut-like homeobox 1; DNMT3A, DNA (cytosine-5)-methyltransferase 3A; ESA, erythropoiesis-stimulating agent; ETV6, ETS variant transcription factor 6; EZH2, enhancer of zeste 2 polycomb-repressive complex 2 subunit; *FLT3*, Fms-like tyrosine kinase 3; *GATA*, glutamyl-tRNA amidotransferase, subunit A; *GATA2*, GATA-binding protein 2; *IDH*, isocitrate dehydrogenase (NADP+); JAK2, Janus kinase 2; KRAS, Kirsten rat sarcoma virus; LR-MDS, lower-risk myelodysplastic syndromes; MDS, myelodysplastic syndromes; NADP, nicotinamide adenine dinucleotide phosphate; NGS, next-generation sequencing NPM, nucleophosmin; NRAS, neuroblastoma RAS; PHF6, PHD finger protein 6; PTPN11, protein tyrosine phosphatase nonreceptor type 11; RBC, red blood cell; RS, ring sideroblasts; RUNX1, RUNX family transcription factor 1; SETBP1, SET-binding protein 1; SF3B1, splicing factor 3b subunit 1; SRSF2, serine and arginine-rich splicing factor 2; STAT3, signal transducer and activator of transcription 3; TET2, tet methylcytosine dioxygenase 2; TI, transfusion independence; U2AF1, U2 small nuclear RNA auxiliary factor 1; VAF, variant allele frequency; *ZRSR2*, zinc finger (CCCH type), RNA-binding motif and serine/arginine rich 2.

ACKNOWLEDGMENTS

We thank all the patients and caregivers for their participation in this study and acknowledge the collaboration and commitment of all investigators and their research support staff. All authors contributed to and approved the presentation. Writing and editorial assistance was provided by Mihaela Marina, PhD, and Mary C. Wiggin of Ashfield MedComms, an Inizio Company.

CONTACT INFORMATION

ClinicalTrials.gov: https://clinicaltrials.gov/study/NCT02598661; email: info@geron.com