**PII-128** 

## INTRODUCTION

- Imetelstat is a first-in-class telomerase inhibitor in development for the treatment of myeloid malignancies, including treatment of transfusiondependent anemia in patients with lower-risk myelodysplastic syndromes (LR-MDS).
- Imetelstat is a 13-mer N3' $\rightarrow$ P5' thio-phosphoramidate oligonucleotide with a lipid tail to enhance cellular uptake<sup>1-2</sup>. It has a sequence complementary to and specifically binds with high affinity to the template region of the RNA component of human telomerase (Figure 1).
- Imetelstat and other oligonucleotide classes have structural similarities; however, the mechanism of action for imetelstat is not antisense based, as it does not target mRNA of any gene. Instead, it acts as a classical active site enzyme inhibitor.
- Telomerase inhibition by imetelstat leads to loss of a malignant cell's ability to maintain telomere length, resulting in inhibition of cell proliferation and death of malignant cells<sup>3-11</sup>.
- Nonclinical proof-of-concept studies for imetelstat correlated pharmacokinetic (PK) exposure, pharmacodynamic effect (target engagement by inhibition of telomerase activity) and tumor growth inhibition *in vivo* in xenograft mouse models and indicated that higher imetelstat doses were associated with greater plasma exposure and target engagement<sup>12-13</sup>.
- The IMerge Phase 3 study (NCT02598661) established the benefit/risk of following 0-order input from IV infusion. imetelstat 7.5 mg/kg q4w\* in LR-MDS, demonstrating a statistically Inspection of PK profiles showed greater than dose proportional significant and clinically meaningful improvement in red blood cell exposures, therefore nonlinear models were investigated. transfusion independence over placebo and a manageable safety Based on physiological considerations and oligonucleotide properties, profile<sup>14</sup>. body weight (BW) was incorporated on imetelstat PK properties using The clinical benefit of imetelstat in myelofibrosis (MF) was demonstrated allometric scaling coefficients<sup>17,18</sup>.
- in the IMbark Phase 2 randomized dose-finding study (NCT02426086)<sup>15</sup>. The confirmatory IMpactMF Phase 3 study (NCT04576156) is ongoing to evaluate a potential improvement in overall survival for imetelstat compared to best available therapy in patients with MF<sup>16</sup>.

#### Figure 1. Imetelstat **Mechanism of Action**



- Investigate the population pharmacokinetics (popPK) of imetelstat across its clinical development program.
- Characterize imetelstat PK properties, identify and quantify sources of PK variability, and investigate the potential need for individualized dosing recommendations.

## **METHODS**

- 58.3% (247/424) of included patients were male. The imetelstat popPK model was developed based on data collected from patients receiving imetelstat in 7 clinical studies (Table 1), including PK • Median (range) baseline body weight was 75.0 kg (44.0–161 kg). (serial and sparse), dosing, demographic, disease status, laboratory, and Baseline spleen volume data were only available for Study MYF2001. anti-drug antibody (ADA) status data.
- Plasma concentrations were analyzed using a hybridization ELISA assay; lower limit of quantitation ranged from 0.367 µg/mL - 0.588 µg/mL.

Presented at the American Society for Clinical Pharmacology and Therapeutics Annual Meeting, March 27-29, 2024, Colorado Springs, CO, USA

# Novel Nonlinear Population Pharmacokinetic Model of Imetelstat, a First-in-Class Oligonucleotide Telomerase Inhibitor Mario González-Sales<sup>1</sup>, Ashley L Lennox<sup>2</sup>, Fei Huang<sup>2</sup>, Chandra Pamulapati<sup>2</sup>, Ying Wan<sup>2</sup>, Libo Sun<sup>2</sup>, Tymara Berry<sup>2</sup>, Melissa Kelly Behrs<sup>2</sup>, Faye Feller<sup>2</sup>, Peter N Morcos<sup>3</sup>

<sup>1</sup>Modeling Great Solutions Pharmaceutical Research & Studies, FZE, Dubai, UAE; <sup>2</sup>Geron Corporation, Parsippany, New Jersey, USA; <sup>3</sup>Morcos Pharmaceutical Consulting, LLC, Marlboro, New Jersey, USA

#### Table 1. Clinical Studies Included in popPK Analysis

| Study Number (NCT)<br>Phase/Design                                                                                                           | Population<br>(N)                                              | Imetelstat Dose (2 h IV infusion)                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| <b>CP14A004</b> (NCT00594126)<br>Phase 1; open-label, dose-escalation                                                                        | Multiple myeloma<br>(N=19)                                     | QW: 3.2 to 7.2 mg/kg<br>Days 1 and 8 Q3W: 6.0 mg/kg                                                                            |  |
| <b>CP04-151</b> (NCT00124189)<br>Phase 2; open-label, dose-escalation                                                                        | Chronic<br>lymphoproliferative<br>disease<br>(N=72)            | QW: 20 to 240 mg/m <sup>2</sup> (*6 h infusion)<br>QW: 160 or 200 mg/m <sup>2</sup><br>Days 1 and 8 Q3W: 200 mg/m <sup>2</sup> |  |
| <b>CP05-101</b> (NCT00310895)<br>Phase 1; open-label, dose-escalation                                                                        | Solid tumor<br>malignancies (N=22)                             | QW: 0.4 to 4.8 mg/kg<br>Days 1 and 8 Q3W: 4.8 to 11.7 mg/kg<br>Q4W: 9.4 or 11.7 mg/kg                                          |  |
| <b>CP14B013</b> (NCT01242930)<br>Phase 2; open-label, alone or in<br>combination with lenalidomide                                           | Multiple myeloma<br>(N=13)                                     | Days 1 and 8 Q4W: 7.5 or 9.4 mg/kg                                                                                             |  |
| <b>CP14B015</b> (NCT01243073)<br>Phase 2; open-label                                                                                         | Essential<br>thrombocythemia or<br>polycythemia vera<br>(N=20) | QW: 7.5 or 9.4 mg/kg                                                                                                           |  |
| MYF2001/IMbark<br>(NCT02426086) <sup>15</sup><br>Phase 2; randomized, dose-finding                                                           | Myelofibrosis<br>(N=107)                                       | Q3W: 4.7 or 9.4 mg/kg                                                                                                          |  |
| MDS3001/IMerge<br>(NCT02598661) <sup>14</sup><br>Phase 2; open-label, single-arm<br>Phase 3; double-blind, randomized,<br>placebo-controlled | Lower-risk<br>myelodysplastic<br>syndromes (N=171)             | Q4W: 7.5 mg/kg                                                                                                                 |  |

- Preliminary modeling considered 1- and 2-compartment models
- Covariates were investigated for influence on imetelstat PK with stepwise forward addition (decrease in objective function value (OFV) of  $\geq 6.635$  (p  $\leq 0.01$ )) to develop the full covariate model, followed by backwards elimination (increase in OFV of  $\geq$ 10.83 (p  $\leq$  0.001, with 1 degree of freedom)) to derive the final model.
- Model evaluation was assessed through goodness-of-fit plots and visual predictive checks (VPCs).
- Forest plots were developed to visualize the effects of significant covariates on imetelstat exposure.
- Software included R v4.1.3 for dataset assembly, and NONMEM® v7.4 (ICON, Ellicott City, MD) and Pirana v2.9.8 (Certara, Princeton, NJ) for popPK analysis.

## RESULTS

### **Patient Characteristics**

- The final dataset included 424 patients and 4375 imetelstat plasma concentrations (Table 1).
- ADA data were available for MYF2001 and MDS3001.

### Imetelstat popPK Model

Imetelstat PK was best characterized with a 2-compartment nonlinear disposition model with saturable binding/distribution to the peripheral compartment and dose- and time-dependent elimination from the central compartment (Figure 2).

#### Figure 2. Imetelstat popPK Model



**B**<sub>max</sub>, total concentration of target; **CL**, clearance from central compartment; **K**<sub>back</sub>, transfer rate from peripheral to central compartment;  $\mathbf{K}_{int}$ , internalization rate constant;  $\mathbf{K}_{off}$ , dissociation rate constant;  $K_{on}$ , binding rate constant;  $V_c$ , central volume of distribution

- Inter-individual variation (IIV) was included on CL, V<sub>c</sub>, B<sub>max</sub>, and residual variability
- Residual variability was modeled by an additive error model.
- All parameters were estimated with adequate precision (Table 2).

#### Table 2. Parameter Estimates from Final popPK Model

| Parameter (units)                            | Value  | <b>RSE (%)</b> | Shrinkage (%) |
|----------------------------------------------|--------|----------------|---------------|
| CL (L/h/70k kg)                              | 0.969  | 3.38           |               |
| V <sub>c</sub> (L/70 kg)                     | 3.91   | 2.54           |               |
| K <sub>back</sub> (1/h/70 kg)                | 0.0305 | 8.13           | —             |
| B <sub>max</sub> (µmol/L)                    | 15.5   | 6.80           | <u> </u>      |
| K <sub>int</sub> (L/h/70 kg)                 | 0.0864 | 10.6           | <u> </u>      |
| $K_{on}$ (L <sup>2</sup> /(µmol/L · h)       | 0.157  | 8.58           | <u> </u>      |
| K <sub>off</sub> (L/h)                       | 0.608  | 10.8           | <u> </u>      |
| Effect of spleen volume on B <sub>max</sub>  | 0.672  | 29.6           | <u> </u>      |
| Effect of myelofibrosis on B <sub>max</sub>  | 1.35   | 7.18           | <u> </u>      |
| Effect of multiple myeloma on V <sub>c</sub> | -0.239 | 27.4           | <u> </u>      |
| Effect of dose on CL                         | -0.390 | 9.79           | <u> </u>      |
| Effect of myelofibrosis on CL                | 0.650  | 8.45           | <u> </u>      |
| Effect of sex on CL                          | -0.313 | 16.1           | <u> </u>      |
| Effect of time on CL                         | 6190   | 6.11           | <u> </u>      |
| Effect of sex on V <sub>c</sub>              | -0.121 | 27.0           | <u> </u>      |
| IIV on CL (CV%)                              | 43.6   | 4.26           | 10.4          |
| Correlation of ETA on CL and $V_c(r)$        | 55.6   | 10.4           | <u> </u>      |
| IIV on V <sub>c</sub> (CV%)                  | 25.4   | 6.01           | 19.6          |
| IIV on B <sub>max</sub> (CV%)                | 43.5   | 9.27           | 44.1          |
| IIV residual variability (CV%)               | 55.5   | 4.04           | 16.7          |
| Residual variability (CV%)                   | 22.2   | 3.88           | 13.2          |

## Model Evaluation and Simulations

• The VPC confirms final model appropriateness (Figure 3).

#### Figure 3. VPC for Final Imetelstat PopPK Model



- Final covariates effects were generally modest (Figure 4).
- No clinically relevant effects that would require dose adjustment were seen for age, sex, race, mild to moderate renal impairment or hepatic impairment.
- Significant difference in exposure between MF and MDS, which may be due to splenomegaly in MF and increased tissue uptake of imetelstat.
- Allometrically scaled BW effect improved fit, with limited exposure variation at extreme body weights.

#### Figure 4. Forest Plots of Final Covariates in PopPK Model



Reference patient: male of 70 kg with MDS receiving 7.5 mg/kg imetelstat. Reference spleen volume (MF only): 3010 cm<sup>3</sup>. Gray shading: 80-125% change relative to reference. Exposures simulated after single dose for N=100 virtual patients simulated per category.

## CONCLUSIONS

- Imetelstat PK was described by a 2-compartment model with saturable binding/distribution to the peripheral compartment and dose- and time dependent elimination from the central compartment.
- The analysis supports the BW-based dosing approach, established the lack of need for dose individualizations in various subpopulations, and supports dose differences based on malignancy type (e.g., LR-MDS vs MF)
- The final popPK model can be used to reliably derive individual exposure metrics for exposure-response analyses.

## REFERENCES

- Asai A et al. Cancer Res. 2003 63(14). 3931-3939
- Herbert B et al. Oncogene. 2005 24(33), 5262-5268.
- Baerlocher G et al. *Blood Adv.* 2019 3(22), 3724-3728.
- Brennan S et al. PLoS One. 2010 5(9). Bruedigam C et al. Cell Stem Cell. 2014 15(6), 775-790. 16.
- Dikmen Z et al. *Cancer Res.* 2005 65(17), 7866-7873. 17.
- Ma W et al. Blood. 2017 130, 2860.

**—** 5%

50%

95%

- Marian C et al. Clin Cancer Res. 2010 16(1), 154-163 Mosoyan G et al. Leukemia. 2017 31(11), 2458-2467 Shammas M et al. Leukemia. 2008 22(7), 1410-1418.
- Wang X et al. *Blood Adv*. 2018 2(18), 2378-2388.
- Bassett E et al. AACR Annual Meeting. 2008.
- Go N et al. AACR Annual Meeting. 2010.
- Platzbecker U et al. Lancet. 2024 Jan 20;403(10423):249-260
- Mascarenhas J et al. J Clin Oncol. 2021 Sep 10; 39(26):2881-2892
- Mascarenhas J et al. Blood. 2022 140 (Supplement 1):6826-6829.
- Kleiber M. *Hilgardia*. 1932;6(11):315-353.
- 18. Stahl WR. J Appl Physiol. 1967;22(3):453-460.

netelstat dose level expressed in terms of imetelstat sodium (7.5 mg/kg imetelstat sodium = 7.1 mg/kg imetelstat active moiety).